
Making Your Game Fully Interactive by

NVIDIA FleX
Quan Chen

What’s FleX?

Examples

Motivation

• Too many solvers

• Creates redundant work

• Want one optimization target

• Want two-way interaction between
all object types

[Robinson-Mosher et al. 2008]

[Shinar et al. 2008]

Everything is a set of particles
connected by constraints

Core Idea

Advantages

• Simplifies collision detection

• Stable two-way interaction of all object types:

‣ Cloth

‣ Deformables

‣ Liquids

‣ Rigid Bodies

‣ Gases (not released)

• Fits well on the GPU

Particles

• Phase-ID used to control
collision filtering

• Particles do not belong to a
particular object

• Single collision radius

struct Particle
{
 float pos[3];
 float vel[3];
 float invMass;
 int phase;
};

Constraints

• Constraint types:

‣ Distance (clothing)

‣ Shape (rigids, plastics)

‣ Density (fluids)

‣ Volume (inflatables)

‣ Contact (non-penetration, friction)

• Combine constraints to create wide variety
of effects

‣ Melting, phase-changes

‣ Stiff cloth

 Solver Loop

1. Apply forces (v = v + 1/m*f*dt)

2. Predict new positions (x* = x + v*dt)

3. Find neighbors, contacts

4. Pre-stabilization

5. For (k iterations)

1. For each constraint group G, in parallel:

deltaX = 0

Solve constraints in G

x* += deltaX*(omega/n)

6. Update velocities (v = (x*-x)/dt)

7. Update positions (x = x*)

Contact and Friction

Collision Detection

• All dynamics represented as
particles

• Kinematic objects represented as
meshes

• Two types of collision detection:

‣ Particle-Particle

‣ Particle-Mesh

Collision Detection

• Particle-Particle

‣ Tiled uniform grid

‣ Fixed maximum radius

‣ Re-order particle data according to
cell index to improve memory locality

r

Collision Detection

•Particle-Mesh
‣ Collision primitives

‣ Plane

‣ Sphere & Capsule

‣ Convex

‣ Triangle mesh (CCD)

‣ Signed distance field

‣ Friction (Kinetic, static)

‣ Restitution

 Triangle Collision (TOI)

Convex Collision (MTD)
(projection)

Friction

• Friction in PBD traditionally applied
using a velocity filter

• Coupled position-level frictional
constraint

• Approximate Coulomb friction using
penetration depth to limit lambda

Granular Materials

• Collections of hard spheres

• Treat friction during constraint solve

What can FleX do?

Rigid Bodies

• Convert mesh->SDF

• Place particles in interior

• Add shape-matching constraint

• Store SDF dist + gradient on
particles:

Rest Configuration Deformed State
Best Rigid
Transform

Rest Configuration

Deformed State

Best Rigid
Rotation/
Translatio

n

Rigid Collision

• Just colliding particles is not
robust

• Shapes can become interlocked

• Use SDF stored on particles
(distance + gradient) for interior

• Use “one-sided” particles at the
surface [Müller & Chentanez 11]

Plastic Deformation

• Detect when deformation exceeds a
threshold

• Simply change rest-configuration of
particles

• Adjust visual mesh (linear skinning)

Two-Way Rigid Fluid Coupling

• Mostly automatic

• Include all particles in
fluid density estimation

• Treat fluid->solid particle
interactions as if both
particles solid

Cloth

• Graph of distance + tether constraints

• Adding/removing constraints is easy (tearing)

• Self-collision / inter-collision automatically handled

Ropes
• Build ropes from distance + bending
constraints

• Fit Catmull-Rom spline to points

• Good candidate for GPU tessellation unit

• No torsion constraint (need orientation)

Deformables

• Tetrahedral meshes -> mass
spring system

• Tetrahedral volume
constraints

• Soft shape-matching

Gases(not released yet)

PhysX Vs. FleX

PhysX Overview

• PhysX helps developers to make better games

‣ PhysX is a complete physics solution

‣ PhysX is a core component for game-play and effects

‣ PhysX is highly competitive on all major platforms:
consoles, mobile devices…and PCs, with or without GPU
acceleration

What’s the same

• Both are physics simulation engines

• Support similar feature set

‣ Rigid Bodies

‣ Cloth

‣ Fluid & Particles

What’s different

• Platform

‣ PhysX: all platforms, from mobile, console, to PC, including GPU acceleration

‣ FleX: CUDA

• Solver

‣ PhysX: solvers per feature

‣ FleX: unified solver

• Game logic

‣ PhysX: friendly to game logic

‣ FleX: require mapping particles to game actor and need more callbacks

What’s different

• PhysX has more game related features

‣ CCT, joints, vehicle controller, serialization

‣ Scene queries, e.g ray cast and overlap tests

• FleX has more inter-feature interactivity in nature

• Usually FleX needs to be coupled with PhysX

‣ Large scale terrain, buildings

‣ Two-way interaction between CCT and dynamics

FleX Integration

FleX Integration

• FleX SDK has two parts

‣ Core Library

‣ Extensions Library

• FleX Solver can be embedded inside any authoring tools

‣ UE3/4

‣ Max/Maya

‣ Standalone

Core Library

• C-style API

• Single .h interface, flex.h + flexRelease.dll

• Bulk operations only, example:

• CUDA code

• Supports interop through device->device copies

FLEX_API void flexSetVelocities(FlexSolver* s, const float* v, int n, FlexMemory source);
FLEX_API void flexGetVelocities(FlexSolver* s, float* v, int n, FlexMemory target);

FLEX_API void flexSetPhases(FlexSolver* s, const int* phases, int n, FlexMemory source);
FLEX_API void flexGetPhases(FlexSolver* s, int* phases, int n, FlexMemory target);

Extensions Library

• C-style API

• Single .h interface, flexExt.h + flexExtRelease.dll

• Helpers for:

‣ Allocating and removing particles (freelist management)

‣ Converting meshes to particles via voxelization

‣ Creating constraint graphs for clothing

‣ Creating mass-spring systems from tet-mesh

• Allows users to build lifetime management how they like

• No CUDA code, talks to core API only

Current Status

• UE3 and UE4 FleX integrations
available now

• Shipping in Batman, Killing
Floor

• Components for:

‣ Cloth, Rigids, Inflatables,
Ropes, Fluids, Particles

• Github distribution available
for all UE4 registered
developers:

https://github.com/NvPhysX/UnrealEngine/tree/FleX

FleX Cloth

• Environmental cloth

• CCD Triangle Tests

• Auto-attachment to static or
dynamic actors

• Inflatable constraints

FleX Ropes

• Based on built-in
UCableComponent

• Supports bending / self-
collision / world collision

• Torsion in the future

FleX Particles

• Integration with Cascade

• New modules for spawning
fluids

• New modules for spawning
particle shapes

• Modules for spawning
inflatables / cloth / etc

FleX Force Fields

• Integration with UE4
URadialForceComponent

• Scriptable with
Blueprints

• Applied in CUDA through
FlexExtensions

Interop between PhysX

• Basic two-way interaction
between FleX<->PhysX

• FleX actors insert bounds
into PhysX scene

• Overlap query per-FleX
Actor

• Allows CCT to interact with
FleX objects

Frame Timeline

Controllers
Sync

Gameplay
Host->GPU CPU Flex Solve GPU->Host

PhysX Simulate

Sync
Async

Gameplay

Time

Update

Actors

GPU FleX Solve Transfer Transfer

CPU

Pre Physics During Physics Post Physics

Game Demo:Killing Floor 2

Thank you!

Q&A

